by Central College on 12/12/11. For personal use only.

MECHANISMS OF ACTION OF VANADIUM

Bohdan R. Nechay

Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77550

INTRODUCTION

Vanadium is widely distributed, the twenty-first most abundant element in the Earth's crust, with an average content of 135 ppm. In sea water, vanadium ranks thirty-fourth in abundance, with an average concentration of only 2 ppb. Because it evolved as an essential element for certain forms of life and also because of its wide industrial use, the biological actions of vanadium are of interest to scientists. Excellent accounts of the history and previous knowledge of vanadium are available. (1-7).

The chemistry of vanadium is complex because the metal can exist in oxidation states from -1 to +5 and forms polymers frequently (8). Recently Rubinson (9) reviewed the material concerning the form of biochemically active vanadium. The following generalizations appear justified. At lownormal concentrations in mammals and birds, any free vanadium will be in hydrated, monomeric form. In the body fluids at pH 4-8, the predominant species will be VO_3^- (+5 oxidation state), vanadate (metavanadate). VO_3^- may enter certain cells by an anion transport system and be reduced by glutathione to VO²⁺ (+4 oxidation state), vanadyl. By way of speculation, the oxidationreduction reactions may be as follows: $H^+ + VO_3^- + 2GSH \rightleftharpoons VO^{2+} + G_2S_2$ + OH⁻ + e⁻ + H₂O. Extensive binding to extra- and intracellular ligands may be expected. Since phosphate and Mg²⁺ are ubiquitous in biological processes, VO₃ as the analogue of phosphate and VO²⁺, which resembles the size of Mg²⁺ (respective ionic radii: 0.60 and 0.65 Å), potentially have many biochemical and cellular sites of action. For example, vanadium compounds inhibit ATP phosphohydrolases, ribonuclease, adenylate kinase, phosphofructokinase, squalene synthetase, glyceraldehyde-3-phosphate dehydrogenase (10),

glucose-6-phosphatase (11), and phosphotyrosyl-protein phosphatase (12). The recent finding that VO_3^- is one of the most potent known inhibitors of Na⁺ + K⁺ ATPase (13–15), and a suggestion that vanadium may be a physiologic regulator of the Na⁺ pump (16), have stimulated much research activity, and several reviews and editorials on the long-elusive role of vanadium in biology (9, 10, 17–25) have appeared.

This review is confined to selected aspects of vanadium interaction with transport ATPases and its expression on cellular, organ, and whole animal levels. For a biological perspective, updates on biochemistry, distribution, nutrition, and as yet unexplained observations on the effects of vanadium will be included. The symbol VO_3^- (for vanadate) will be used instead of the names of various salts of metavanadate (VO_3^-) or orthovanadate (VO_4^{3-}) employed in the works referenced.

DISTRIBUTION OF NATURALLY OCCURRING VANADIUM IN BIOLOGIC MATERIALS

The knowledge of vanadium content in biologic materials is far from complete. In addition to natural variability, inappropriate sensitivity of analytical methods, interference by other elements, nonavailability of standard reference materials in the past, and easy contamination of samples have contributed to a wide spread of vanadium values reported in the literature (26, 27). The most sensitive of commonly used methods for measuring vanadium are the techniques of neutron activation analysis (NAA) (26) and flameless atomic absorption spectroscopy (AAS) (28–9); detection limits are well under 1 ng of vanadium. The values given below are in ng per ml or g wet weight (5.1 = 10^{-7} M).

Humans

Byrne & Kosta (26) and Cornelis et al (27, 30) scrutinized published information on vanadium concentration in the blood plasma or serum (ranging from 0.016–570) and whole blood (ranging from 0.5–1500) of healthy individuals and concluded that much of the disparity in these figures was methodological. The lowest ever reported vanadium serum concentration determined by NAA ranged from 0.016–0.139 in 37 women and from 0.024–0.939 in 37 men (30). No correlation was found between vanadium content and age or serum concentrations of cholesterol, triglycerides, or lipoproteins. The lowest mean vanadium concentration determined by NAA in whole blood was 0.5 (26). Values recently obtained by AAS were 3 for serum (29), 8 for plasma (31), and 6 for whole blood (32). According to only a few measurements, erythrocytes appear to have a vanadium content similar to that of plasma (30, 32). By a photometric method, <1 to 11 (<1 to 24 in chimney sweepers) was found in whole blood

by Central College on 12/12/11. For personal use only.

(33). Byrne et al (26, 34–36) reported (and compared with published values) the following vanadium concentrations (by NAA) in tissues and body fluids: bone and teeth, <1-8; liver, 5-19; kidney, 3-7; heart, 1; skeletal muscle, <1-7; spleen and thyroid, 3-4; pancreas, 14; brain, fat, urine, <1; lung, 13-140; hair, 12-87; bile, <1-2; dry feces, 141-2210; dry milk and colostrum, <1-1. Other workers reported: liver, 3-13 (NAA) (37); kidney, 67-194 (AAS) (38); placenta, 3 (photometry) (39). The US Environmental Protection Agency (40) listed vanadium ranges of 4-140 for hair and 4-625 for nails. Mean vanadium content in neonates' hair was 50 (NAA) (41). Vanadium concentrations in hair appear to be sensitive to environmental exposure (42). US city dwellers showed increased lung concentrations in the fifth and particularly sixth decades of life (43).

A recent estimate of the total body pool of vanadium in the "reference man" was 100–200 µg (26), in contrast to Schroeder's earlier calculation of 22 mg (4). The daily dietary intake of vanadium was estimated as $10-60 \mu g$ (26, 34, 44, 45), with excretion mainly in the feces and urine (45). The mean urinary output per 24 hours was 10 μ g (29). Intake via air and water may be significant (6, 26).

Other Mammals (26, 28, 32, 46, 47)

Researchers have shown the following values in other mammals: bone, 20–40 (pig, sheep); bone marrow, <1 (pig); liver, 2–10 (beef, pig, rat); kidney, 9–34 (rat, pig, dog, rabbit); heart, <1-9 (pig, rat, rabbit); skeletal muscle, <1-14 (beef, pig, rabbit, horse); brain, <1-3 (rat, cow); lung, 5-25 (rabbit, beef); fat, <1-2 (pork); butter, 1; milk, <1-3; plasma, 2-5 (rat); gelatin, 9-43; whole mouse, 66.

Chicken (26, 28, 48)

Researchers have shown the following values in chicken: dry bone, 370-760; (turkey bone, 86); liver, 38; kidney, 18 (107 on 3.5 μg vanadium/g diet); heart, 5–9; light muscle, 2–22; dark muscle, 12; egg white, <1-2; egg yolk, 2–21.

Aquatic Animals (26, 28, 47, 49, 50)

Researchers have shown the following values in aquatic animals: salt water fish, 3-28 (cod, mackerel, sardines, tuna); fish bone, 125-2000 (mackerel, tuna); fresh water trout, 0.4; lobster, 5-43; scallop, 22; dry blue crab, mussels, oysters, white shrimp, 455-1840. Vanadium content in shrimp and oysters was higher in specimens taken from industrialized areas compared to nonindustrialized sections around Galveston Island, Texas (49). An extensive list of vanadium concentrations in other biological systems has been published (1).

Plants (26, 28, 32, 47)

Researchers have shown the following values in plants: numerous fruits, vegetables, nuts, oils, <1-5; lettuce, radish, spinach, 21-52; dill, 140; dill seed, 431; parsley, 790; cereals, grains, beans, flour, bread, <1-93; dry wild mushrooms, 50-2000 (26 species); dry *Amanita muscaria*, 51,000 (as amavadin) (1); cocoa powder, 610; dry tea leaf, 150; dry black pepper, 204-987; wine, 4-32; beer, 8; tobacco, 1000-8000 (10 types); drinking water <1-2.

DISTRIBUTION OF EXPERIMENTALLY ADMINISTERED VANADIUM

The most complete picture of vanadium distribution emerges from autoradiographic studies of sagittal sections of whole mice prepared five minutes to seven days after an intravenous injection of ⁴⁸V₂O₅. These studies included pregnant mice (51). Half-life of ⁴⁸V in blood was <1 hour. Bones and teeth had the highest persistent concentrations of vanadium, which reached a peak 1-2 days after the injection; ⁴⁸V accumulated to the greatest extent in zones of ossification. [In a similar study on 7–9 day-old rats, the greatest ⁴⁸V uptake was found in parts of the teeth and bones, where rapid mineralization was taking place (52)]. In soft tissues, ⁴⁸V rose rapidly after the injection and declined faster than in bone. The highest concentrations were found in the kidney cortex, the liver with a spotty distribution, and the lung parenchyma, with no radioactivity in the bronchi. Medium levels of radioactivity were found in the skin and salivary glands, with low concentrations in skeletal and heart muscles, cartilage, spleen, and brain. Intestinal and urinary bladder contents were high in vanadium. In the pregnant mice, high concentrations of vanadium were visible in the placenta, especially the visceral yolk sac epithelium, the fetal skeleton, and the mammary gland. Other investigators (53-61) found similar distribution in selected organs of mice or rats after giving various vanadium compounds by different routes. Some accumulation in testes was also noted. A similar organ and subcellular distribution of vanadium after intravenous injections in rats of labelled cationic and anionic compounds with different vanadium oxidation states suggests an in vivo conversion of dissimilar vanadium compounds to common vanadium species (62–63). In blood, less than 5% of radioactivity was associated with erthrocytes and over 95% was in plasma; some vanadium was bound to transferrin [liver and spleen ferritins also bind vanadium (64, 65)]. In fractions of liver and kidney homogenates, nuclei contained the highest quantity of vanadium, followed in descending order by mitochrondria, cytosol, lysomes, and microsomes.

VO²⁺ is used in electron microscopy; it stains cytoplasmic organelles, collagen fibrils, glycogen granules, secretion granules, and ribosomes (66).

An autoradiographic study on fish of ⁴⁸V uptake from water showed an

accumulation in skin, fins, intestines, liver, and bones. Vanadium content was low in the brain, eye, and muscles (47).

NUTRITIONAL IMPORTANCE

Vanadium is an essential nutrient for the chick and the rat (7, 67–71). Deficiencies have been induced in chicks and rats raised in vanadium-free isolator systems on diets containing <30 or <100 ng/g respectively. The requirement for growth probably lies between 50 and 500 ng/g. These figures appear high in view of the much lower vanadium content of most feeds (see the section on naturally occurring vanadium distribution above). However, in poultry farming too much vanadium is of concern because some rock phosphorus feed additives may contain high concentrations of vanadium; acceptable commercial chicken diets contain 1400–5400 ng V/g (72). Wild birds may obtain sufficient vanadium from grit and soil if their requirements are as high as those of chickens.

Vanadium-deficient chicks showed reduced vanadium concentrations in kidney, liver, and heart, reduced weight gain and feather growth, retarded skeletal development, increased plasma triglyceride concentrations and variably altered plasma concentrations of cholesterol. Signs of vanadium deficiency in the rat included impaired fertility, with a marked reduction in fourthgeneration females and reduced pup survival. Deficiency in chicks and rats resulted in increased hematocrits. Evidence suggests that vanadium does not protect against experimental dental carries, as was once proposed (7, 35, 53).

Human diploid fibroblasts require 0.25 ng/ml of vanadium for optimal clonal growth. However, considerable background growth occurs in the absence of added VO_3^- (73). VO_3^- appears to act synergistically with epidermal growth factor in stimulating fibroblast DNA synthesis (74).

The mechanism of vanadium deficiency is not understood. No naturally occurring vanadium-deficiency disease has been described. No natural, functional mammalian or avian vanadium-containing metalloprotein is known.

Na⁺ + K⁺ ATPase

Vanadium has been known since 1965 to inhibit $Na^+ + K^+$ ATPase (75). However, it was shown only recently by three independent laboratories that certain vanadium compounds are among the most potent known inhibitors of this enzyme system (13–15). Cantley et al (13) and Quist & Hokin (15) tested VO_3^- because they identified it as an inhibitory contaminant present in certain ATP preparations (76–80). During a survey of metallic inhibitors of $Na^+ + K^+$ ATPase, Nechay & Saunders (14) worked with V_2O_5 dissolved in NaOH, which yields VO_3^- in solution, and discovered, together with Cantley et al (16),

the inhibitory properties of this ion. In view of the physicochemical properties of vanadium, its interaction with $Na^+ + K^+$ ATPase, its nutritional requirement, and its distribution in tissues, Cantley et al (16, 81) postulated that VO_3^- is a potential regulator of the Na^+ pump. Beaugé & Glynn (76) also considered a similar physiologic role for the inhibitor contained in samples of ATP before it was identified as vanadium because its effect could be altered by K^+ .

VO₃ binds to one high- and one low-affinity site of the enzyme molecule [under optimal conditions the dissociation constants are 4 \times 10 $^{-9}$ M and 5 \times 10⁻⁷ M respectively (16, 82)] and interferes with the activity by slowing $E_2 \rightarrow$ E_1 conformational change (83, 84). The high-affinity VO_3^- site corresponds to the low-affinity ATP site and vice versa (16); ATP reduces VO₃ binding (85, 86) and inhibition (14, 16). Mg²⁺ is required for the binding of VO₃⁻ to the enzyme (80, 85) and inhibition of the $E_2 \rightarrow E_1$ conformational change (84), and it facilitates inhibition of the enzyme's activity (14-16, 87, 88). Na⁺ promotes $E_2 \rightarrow E_1$ conformational change, interferes with VO_3^- binding (85), and opposes inhibition of enzymatic activity (14, 87). Na⁺ may also act by displacing K⁺ (87). An effect of K⁺ in facilitating inhibition (14, 16, 87) may be to displace Na⁺ from sites at which it activates the enzyme (88). K⁺ is not required for VO₃ binding (85). Ca²⁺ or Mn²⁺ can substitute for Mg²⁺ in promoting VO₃ binding, although Ca²⁺ is less effective and Mn²⁺ more effective than Mg²⁺ (85, 86, 89). Cations (Tl⁺, Rb⁺, Cs⁺, NH⁺, Li⁺) that substitute for K⁺ as activators of the enzyme also increase VO₃ inhibition (87, 90, 91).

Overall, in a model in which VO_3^- can bind only to the E_2 conformational state, agents that favor the E_2 state, such as Mg^{2+} , K^+ , ouabain, and dimethyl sulfoxide, increase VO_3^- binding, whereas those that favor the E_1 state, such as ATP, Na^+ , and oligomycin, decrease VO_3^- binding (85, 92–95). VO_3^- is able to promote the binding of ouabain to $Na^+ + K^+$ ATPase in the absence of ATP (89, 92); based on this finding, a potentially clinically useful method was developed for measuring the number of ouabain binding sites in muscle biopsies (96). VO_3^- was reported to lower pH optimum for isolated renal $Na^+ + K^+$ ATPase activity from 7.8 to 7.0 (97).

Agents that interfere with VO₃⁻ inhibition include bovine serum albumin (14), which probably acts by chelation; anions such as citrate (14) and EDTA (14, 98), which may displace the anionic VO₃⁻ from the enzyme; reducing agents such as glutathione (90, 99), ascorbate (14, 90), NADH, methylene blue, imipramine, and chlorpromazine (100, 101), which convert the VO₃⁻ to less active VO²⁺; and catecholamines, which may both bind and reduce VO₃⁻ (15, 98, 102, 103, 235).

Incorporation of Na⁺ + K⁺ ATPase in lipid bilayers confers high ion channel conductance when a cation gradient is present across the planar

membrane, and removal of the gradient results in low conductance. The high but not the low conductance state is inhibited by ouabain and VO_3^- (104).

In human erythrocytes (105, 106) and squid axons (107), VO_3^- is an effective inhibitor of the $Na^+ + K^+$ pump only when it interacts with the cytoplasmic surface of the $Na^+ + K^+$ ATPase, since VO_3^- binds to the phosphate site on the enzyme, located inside the cell. External K^+ (and Rb^+ , Cs^+ , NH^+ , Li^+) controls VO_3^- inhibition of $Na^+ + K^+$ ATPase activity by an allosteric mechanism: low concentrations activate Na^+ efflux, high concentrations inhibit it (84, 105, 107).

 $^{48}\text{VO}_3^-$ rapidly enters the erythrocyte, possibly by the same anion transport system as phosphate; there is also a slow equilibration process (56, 99, 106, 108). Inside the cell, $^{48}\text{VO}_3^-$ is reduced nonenzymatically by glutathione (99), and probably by NADH, ascorbate, and catechols, to $^{48}\text{VO}_3^-$ (56), a less active inhibitor of the 48 + 48 ATPase activity (81, 90, 102, 109, 110). Similarly, entry of $^{48}\text{VO}_3^-$ into rat adipocytes and its reduction to $^{48}\text{VO}_3^-$ to rats, +4 is the predominant oxidation state of vanadium in homogenate of kidney and liver and subcellular liver fractions (112, 113). Binding of $^{48}\text{VO}_3^-$ to ATP (114, 115) and other phosphate and carboxyl ligands protects it from oxidation to $^{48}\text{VO}_3^-$ (236), which would otherwise tend to occur at the intracellular pH. It is conceivable that the oxidation-reduction reactions could supply an appropriate concentration of free $^{48}\text{VO}_3^-$ to modify the $^{48}\text{VO}_3^+$ + $^{48}\text{VO}_3^-$ to modify the $^{48}\text{VO}_3^+$ to however, the quantitative aspects and the physiologic control of free intracellular $^{48}\text{VO}_3^-$ concentrations have yet to be established.

 VO_3^- inhibits transepithelial Na^+ transport when applied at a high concentration (10^{-3} M) to the mucosal (but not to the serosal) surface of frog skin and toad bladder preparations (116, 117). Equally high VO_3^- concentration is required to inhibit $Na^+ + K^+$ ATPase activity in toad bladder homogenates. In keeping with the known ability of K^+ to promote the binding of VO_3^- and inhibition of enzyme activity, K^+ potentiates the VO_3^- effect on Na^+ transport in the toad bladder. VO_3^- exhibits delayed effects on both the Na^+ transport and the enzyme activity (117). The action of VO_3^- is not limited to $Na^+ + K^+$ ATPase, since it also blocks cyclic AMP-induced stimulation of Na^+ and water transport in amphibian epithelia (116, 118) and the H^+ pump in the turtle urinary bladder (119).

Of the 5b group of elements, niobate and tantalate are less effective $Na^+ + K^+$ ATPase (fish gills) inhibitors than VO_3^- (120).

$$Ca^{2+} + Mg^{2+} ATPase$$

Studies have been done mainly on enzymes from sarcoplasmic reticulum of mammalian skeletal muscle and heart and from human erythrocytes. The red

cell $Ca^{2+} + Mg^{2+}$ ATPase is several times more resistant to VO_3^- than $Na^+ + K^+$ ATPase (121). The $Ca^{2+} + Mg^{2+}$ ATPase of sacroplasmic reticulum requires at least 10 times higher concentration of VO_3^- for 50% inhibition than that of erythrocytes (122–124). It is generally agreed that Ca^{2+} induces conformational transition of $E_2 \rightarrow E_1$ and stabilizes the E_1 state (125). VO_3^- stabilizes the E_2 state and inhibits the Ca^{2+} -induced conformational change. VO_3^- binds to the Ca^{2+} -free enzyme in a process that requires Mg^{2+} and is competitively antagonized by phosphate and ATP; the high concentration of ATP required indicates binding of VO_3^- to the low-affinity binding site. A similar number of sites for VO_3^- binding and phosphorylation suggests that the stabilization of the Ca^{2+} -free conformation is due to formation of a stable E-Mg-V complex at the site of phosphorylation (123, 126). The activators of the enzyme Mg^{2+} , K^+ , Na^+ and calmodulin facilitate inhibition by VO_3^- , while ATP and Ca^{2+} at concentrations higher than 5×10^{-5} M protect (121, 124, 127, 128). Li⁺ does not substitute for K^+ in this system (121).

In reconstituted erythrocyte ghosts, intracellular VO_3^- (5 × 10⁻⁵ M) inhibits active Ca^{2+} efflux; this inhibition is promoted by intracellular Mg^{2+} and K^+ and is antagonized by extracellular Ca^{2+} (129). The sensitivity of the Ca^{2+} pump to VO_3^- in vesicles made of purified red cell $Ca^{2+} + Mg^{2+}$ ATPase is similar to that observed in whole erythrocytes ghosts (130). In the intact red cell, external VO_3^- (5 × 10⁻⁵ M) does not inhibit the Ca^{2+} pump (131). When exposed to 5 × 10⁻⁴ M VO_3^- , fresh erythrocytes become highly labelled with externally added Ca^{2+} , which suggests some penetration of VO_3^- into the cells as well as inhibition of the outwardly directed Ca^{2+} pumping ATPase (132). The VO_3^- -induced accumulation of Ca^{2+} by red cells causes a massive efflux of K^+ , suggesting either an activation of the Ca^{2+} -sensitive K^+ channel in the erythrocyte membrane (132) or that the intracellular VO^{2+} metabolite, similarly to Ca^{2+} , Mg^{2+} , and Pb^{2+} , can open the K^+ channel (133).

The newly characterized $Ca^{2+} + Mg^{2+}$ ATPase of dog heart sarcolemma is about as sensitive to VO_3^- (Ki = 0.5 μ M) as the Na⁺ + K⁺ ATPase. This high VO_3^- sensitivity has been used to distinguish the Ca^{2+} ATPase activity of sarcolemmal vesicles from that of the contaminating sarcoplasmic reticulum vesicles in heart microsomal fractions. The sarcolemmal enzyme could be responsible for ejecting Ca^{2+} during resting conditions when its intracellular concentration is very low (134). Also, in the intestinal smooth muscle, two Ca^{2+} transport activities resembling the sarcoplasmic reticulum and sarcolemmal Ca^{2+} pumps have been differentiated by sensitivity to VO_3^- (135).

VO₃ inhibits uncoupled (probably Ca²⁺ ATPase-dependent) Ca²⁺ efflux from squid axon (136) and isolated rat neurohypophyses (137). The Na⁺-Ca²⁺ exchange is not affected. ATP-dependent Ca²⁺ uptake by microsomal fractions of rat salivary glands is inhibited by VO₃ (138). Isolated from rat livers,

 Ca^{2+} -pumping ATPase of the endoplasmic reticulum (139), but not that of plasma membrane (140), is sensitive to VO_3^- .

$H^+ + K^+$ ATPase

 VO_3^- inhibits microsomal gastric mucosa K^+ ATPase, which is an expression of a part of the gastric H^+ pump; proton transport by gastric microsomal vesicles and acid secretion by gastric glands are also reduced (128, 141, 142). VO_3^- also inhibits urinary acidification by the turtle bladder; the mechanism has not been determined (119). A bacterial membrane-bound proton-translocating ATPase was found to be sensitive to VO_3^- (143).

DYNEIN ATPases

Dynein is the collective name for either Ca²⁺- or Mg²⁺-requiring high molecular weight ATPases associated with microtubules. They function in the transduction of the chemical energy provided by ATP hydrolysis into mechanical work such as ciliary and flagellar motility and may have roles in chromosome movement, exoplasmic transport, and the intracellular movement of membrane-bound vesicles (144, 145). The sources of dyneins studied in detail have been the flagella and cilia of the *Tetrahymena* and the sea urchin.

 VO_3^- at concentrations on the order of 10^{-6} – 10^{-7} M reversibly inhibits both the isolated dynein ATPase activity and the motility of demembranated sea urchin or porcine sperm flagella and sea urchin embryo cilia (146, 147). Mg²⁺-activated dynein is over 30 times more sensitive to VO_3^- than the Ca^{2+} -activated one (146, 148, 149). The inhibition of Mg²⁺-stimulated enzyme activity is noncompetitive with ATP (146, 148, 150), as is the reduction of flagellar beat frequency by VO_3^- (146). The intact sea urchin spermatozoa are not inactivated by 10^{-2} M VO_3^- , and those of the pig require 10^{-3} M VO_3^- for complete paralysis (147). Other observations extend and amplify these findings (151–157).

Myosin and actomyosin ATPases are not inhibited by VO_3^- concentrations below 5×10^{-4} M (13, 146). Other studies, however, have demonstrated an irreversible, slow-onset inhibition of myosin and actomyosin ATPases by millimolar concentrations of VO_3^- ; the mechanism is the formation of a stable myosin-ADP-vanadium complex (158–160). The difference in kinetics and sensitivity to VO_3^- offers an opportunity for distinguishing between the actions of dynein and myosin in different forms of cell motility (146, 161).

 VO_3^- at $\sim 10^{-5}$ M has been shown to inhibit mitotic spindle in lysed cells (162) and translocation of pigment granules in permeabilized erythrophores (163) or when injected into the cell (164).

ADENYL CYCLASE

Cyclic AMP is formed by the catalytic action of adenyl cyclase and is inactivated by phosphodiesterase. VO_3^- (>10⁻⁵ M), along with fluoride, catecholamines, vasopressin, prostaglandin E₁, parathyroid hormone, and glucagon, stimulates isolated adenyl cyclase activity from a variety of sources (165-170). The action of VO_3^- is not shared by V^{4+} and V^{3+} compounds (171) and is independent of hormones and inhibition of phosphodiesterase by theophylline (170, 172); it differs from that of fluoride (172–174). The postulated mechanism involves formation of an enzyme complex with VO₃ via guanine nucleotide regulatory protein (174). Since VO₃ does not attenuate the ability of hormone receptors to direct inhibition of adenyl cyclase, a routine inclusion of VO₃ in studies directed at further elucidation of the mechanisms of receptormediated inhibition of the enzyme was suggested (172). One would expect VO₃ to have cyclic AMP-mediated hormone-like effects in vivo. However, in toad bladder and skin, VO₃ blocks cyclic AMP-induced (by vasopressin, theophylline, and exogeneous cyclic AMP) transepilial osmotic water flow by an unknown mechanism (116); it may also stimulate water flow in such systems (118).

Concentrations of VO₃ in excess of 5 mM inhibit adenyl cyclase (172).

SMOOTH MUSCLE

In view of the dependence of vascular muscle tone on the electrogenic Na⁺ pump, the effects of Na⁺ + K⁺ ATPase inhibitors on blood pressure are of great interest (175, 176). Indeed, an intravenous administration of VO₃⁻ acutely raises arterial blood pressure in rats (177, 178). Prolonged dietary administration of VO₃⁻ (100–200 ppm) to uninephrectomized rats produces hypertension that correlates positively with plasma vanadium concentrations ranging from 40–270 ng/ml (179). Note, however, that these vanadium levels are much higher than those encountered in human populations. In the dog or cat, intravenous VO₃⁻ infusions cause arterial hypertension, increased peripheral resistance, and a marked reduction of coronary, visceral, and renal blood flow, whereas the large arteries (femoral and carotid) escape constriction (180–183). There also may be centrally mediated effects of VO₃⁻ on blood pressure (184).

As expected of a Na⁺ + K⁺ ATPase inhibitor, VO₃⁻ (10^{-4} M) causes a contraction of isolated vascular smooth muscle preparations but does not inhibit the Na⁺ pump (185-188). The VO₃⁻-induced contraction is blocked by a stilbene, an inhibitor of the anion transport system, suggesting an intracellular action of VO₃⁻ (185-188). Aortas of Dahl salt hypertension–sensitive rats react more vigorously to VO₃⁻ than do those from control rats (188).

It has been suggested that VO_3^- may act by inhibiting Ca^{2+} ATPase that controls intracellular Ca^{2+} concentrations (185). However, VO_3^- at a concentration as high as 10^{-4} M has been reported to have only minimal inhibitory effect on plasma membrane Ca^{2+} ATPase derived from rat mesenteric arteries and veins (189). VO_3^- also augments ³H-norepinephrine release from the isolated pulmonary artery (190) and there is a pharmacological similarity between the contraction induced by VO_3^- and norepinephrine (187). Another observation is that actomyosin preparations of the carotid arteries of cattle contain VO_3^- -sensitive phosphatase activity (191).

Intestinal smooth muscle may be more sensitive to VO_3^- than vascular muscle (185) and the VO_3^- -induced contraction is inhibited by removal of external Ca^{2+} (192). Several vanadium compounds evoke contractions of the isolated rat vas deferens (193).

HEART

Since inhibition of Na⁺ + K⁺ ATPase has been implicated in the positive inotropic action of digitalis, there is much interest in the cardiac effects of VO₃. The subject has been clearly reviewed, and the reviewers concluded that VO₃ has more action on the heart than does digitalis (17, 20). In intact dogs and cats, VO₃ decreases the force of ventricular contraction, presumably due to a marked coronary constriction occurring at concentrations too low to have a direct effect on myocardium. In isolated cardiac muscle preparations, VO₃ produces positive or negative inotropic effects, depending upon species, type of muscle, and experimental conditions; these actions do not appear to involve Na⁺ + K⁺ ATPase inhibition. VO₃ stimulates adenyl cyclase and so can increase the concentration of cyclic AMP in cardiac muscle; this effect also seems to be unrelated to its inotropic actions. VO₃ increases force of contraction of isolated rat atrial muscle by increasing the Mn²⁺-sensitive superficial Ca²⁺ pool, which is related to the beat-to-beat control of force of contraction; on the other hand, VO₃ lowers the force of contraction in guinea-pig atrial muscle by inhibiting slow Ca²⁺ channels (194). Compounds of vanadium in +4 and +3 oxidation states do not share with VO₃ the positive inotropic effect on isolated cat papillary muscles and stimulation of adenyl cyclase (171).

High concentrations of VO_3^- (>10⁻⁴M) may inhibit (like ouabain) or stimulate (like insulin) the uptake of K^+ by heart muscle cells from various species; both types of effects may be associated with the positive inotropic effect (195). It was shown previously for other tissues that VO_3^- mimics the stimulating effect of insulin on glucose oxidation (111) and transport, which appears to be associated with or mediated by a rise in cytoplasmic Ca^{2+} concentration (196). Another suggestion is that the stimulation by VO_3^- of rat heart protein kinase, which promotes the phosphorylation of the membranes of

the sarcoplasmic reticulum, may play a role in strengthening myocardial contraction by increasing sarcoplasmic reticulum stores of Ca²⁺ (197).

In chemically skinned right-ventricle hog preparations, inorganic phosphate and VO₃⁻⁻ interfere with the chemomechanical energy transformation of myosin (198).

KIDNEY

The renal effects of vanadium have been reviewed previously (21, 23); they include a mixture of hemodynamic and parenchymal actions and, like cardiac effects, are characterized by unexplained and profound species differences. VO_3^- produces a large diuresis in the rat but not in the dog (181, 199, 200) and cat (182, 183); vasoconstriction, lowering of renal blood flow, and glomerular filtration rate (GFR) are prominent. In the rat, GFR may rise simultaneously with increased renal peripheral resistance, suggesting a postcapillary vasoconstrictor effect (201); in the dog and cat only a fall of GFR was seen.

Most authors have speculated that the diuresis induced by VO₃ in the rat is due to inhibition of Na⁺ + K⁺ ATPase, since the ouabain-sensitive Na⁺ pump accounts for up to 50% of renal Na⁺Cl⁻ reabsorption, the urinary electrolyte excretion pattern is typical for ouabain, and renal Na+ + K+ ATPase is exquisitely sensitive to VO₃. Vanadium accumulates in the kidney, although this may be mainly in the form of VO²⁺, with less activity with respect to Na⁺ + K⁺ ATPase. Rats on 15-day diets containing 5 and 25 ppm VO₃⁻ had renal vanadium concentrations in excess of 10^{-5} M but showed no changes in fractional Na⁺ excretion or Na⁺ + K⁺ ATPase activity in kidney homogenates (46). On the other hand, chickens on diets containing subtoxic (25–50 ppm) and toxic (100 ppm) concentrations of VO₃⁻⁻ for 15 months had reduced renal Na⁺ + K⁺ ATPase in proportion to renal concentrations of vanadium; the potency of vanadium for Na⁺ + K⁺ ATPase was similar in vivo and in vitro, showing I_{50} of 5×10^{-6} M. Unfortunately, diuretic studies were not performed in these birds (48). These enzyme observations are also of interest in determining the mechanism of vanadium-induced nephrotoxicity, since generalized proximal tubular transport defects (Fanconi syndrome) may be associated with interference with the active Na⁺ pump (202).

 VO_3^- reduces renal renin secretion in rat kidney slices (203) and in volume-expanded dogs (199). It produces a striking phosphaturia in acutely parathyroidectomized rats (204). $Ca^{2+} + Mg^{2+}ATP$ as of the rabbit kidney is resistant to VO_3^- (205).

Beside the fact that urine is the major excretory route for vanadium (45), nothing is known about the renal handling of vanadium compounds.

EYE AND EAR

Topical application of VO_3^- lowers intraocular pressure in the rabbit and monkey, presumably by inhibition of $Na^+ + K^+$ ATPase in the ciliary body and consequent reduction of intraocular fluid formation (18, 206). It proved only marginally effective in human ocular hypertension (207). VO_3^- (>10⁻⁴ M) also inhibits active Na^+ and Cl^- transport in the isolated frog cornea (208). An ATPase from toad retinal rod outer segments that may have a dynein function involved in light-controlled structural changes (photoreceptor ?) is sensitive to VO_3^- (209).

Ototoxicity of locally applied VO_3^- was studied in guinea pigs. Both the endocochlear and microphonic potentials are inhibited by ouabain. Although VO_3^- inhibits $Na^+ + K^+$ ATPase of stria vascularis in vitro, it causes an increase in the cochlear potential followed by a gradual decrease and a depression of the microphonic potential when applied perilymphatically. These results were interpreted to suggest that VO_3^- acts by depolarizing the hair cells of the organ of Corti (210, 211).

BRAIN

Whole brain mirosomal Na⁺ + K⁺ ATPase is several times less sensitive to VO₃⁻ than is the kidney or heart enzyme in four mammalian species (14); it is not known whether this is related to the presence of two types of Na⁺ + K⁺ ATPase in the brain (212) or to other factors. Consistent with inhibition of Na⁺ + K⁺ ATPase, VO₃⁻ interferes with the uptake of ³H-norepinephrine by rat cerebral cortex slices; the high concentrations (>10⁻⁴ M) required suggest poor intracellular penetration of VO₃⁻. Vanadium intoxication in rats causes changes in brain catecholamine levels (213). VO₃⁻ (10⁻³ M) also diminishes muscarinic binding sites in homogenates of rat corpus striatum (214).

The signs of vanadium toxicity in man include tremor and central nervous system depression (215). A group of Scottish investigators suggest that manic-depressive disorders may be associated with increased vanadium levels and a genetically defective Na⁺ pump (examined in lymphocytes and erythrocytes) hypersensitive to inhibitors (216–218). An editorial on the subject appeared in *Lancet* (19). Plasma vanadium concentrations in manic-depressed subjects were about twice that of normal controls and declined after recovery (31). Encouraging results were obtained in the therapy of manic-depressive psychosis with a low vanadium diet and therapy with EDTA or reducing agents, ascorbic acid, and methylene blue (219). Antidepressants such as imipramine and indalprine may also reduce VO₃⁻ to VO²⁺. Other investigators extended these observations to several ATPases in erythrocytes of patients with affective

disorders and found the best correlation between mood and Ca²⁺ ATPase activity (91).

MISCELLANEOUS

The common signs and symptoms of occupational industrial exposure to excess airborne vanadium are associated with the irritation of airways and conjunctiva and a green discoloration of the tongue. Recent measurements indicate that this may be accompanied by pronounced reversible reductions in forced vital capacity, forced expiratory volume, and forced mid-expiratory flow, together with increased urinary vanadium excretion (220). A few observations suggest that V_2O_5 particles may produce asthma, as judged by bronchiolar hyperreactivity to histamine (221). Alveolar macrophages isolated from rabbit lungs are inactivated only by very high concentrations (>10⁻⁴ M) of V_2O_5 (222) and hence appear to offer a poor model for pulmonary toxicity testing of vanadium compounds. Green tongue may be due to deposition of hexaquo ion $[V(H_2O)_6]^{3^+}$ (23).

In perfused rat livers, VO_3^- increases vascular resistance (at 3×10^{-5} M in the perfusate), decreases O_2 consumption, and reduces bile flow (at 6×10^{-5} M in the perfusate) (223). Some vanadium is excreted in the bile (224).

The effect of vanadium on drug biotransformation has been examined. Several hepatic microsomal mixed-function oxidase reactions are inhibited in vitro by VO_3^- with varying, generally low, effectiveness (225). Upon administration to mice, VO_3^- , and to a much lesser extent VO^{2+} , transiently inhibits oxidative demethylation of substrates of the cytochrome P-450-dependent monooxygenase system (226). Sulfite-induced lipid peroxidation is accelerated by VO_3^- (10⁻⁴ M) in several tissues (227).

Parathyroid hormone, prostaglandin E_2 , 1,25-dihydroxycholecalciferol, and Na⁺-stimulated Ca²⁺ release (resorption) from mouse bone is inhibited by ouabain and $\sim 10^{-5}$ M VO₃⁻ (228).

 VO_3^- hyperpolarizes several types of cultured cells. This unique hyperpolarization is independent of Na⁺, K⁺, or the Na⁺ pump, and requires >10⁻⁵M VO_3^- for 50% effect (229).

The highest known accumulation of vanadium in any living system occurs in tunicate blood cells termed vanadocytes, reaching a concentration on the order of 1 M, or $\sim 10^8$ times higher than in sea water. The mechanism may involve entry of VO_3^- into acidic vacuoles where it is reduced by tunichrome and trapped as V^{4+} , and biologically unique V^{3+} states. The function of vanadocytes is unknown (10, 230, 231). Although crude petroleums contain vanadyl porphyrins of unknown origin, there is no convincing evidence that they have had, or currently have, functions as O_2 carriers or participate in photosynthetic reactions (232). Recently it was found that VO_2^{2+} , but not VO_3^- , enhances O_2

binding to bovine hemoglobin and myoglobin (233); the high vanadium concentration required (>10⁻⁴ M) suggests that the effect is of no physiological significance.

Vanadocene dichloride, one of the numerous metallocene dihyalides, has an antiproliferative action in experimental mice leukemias (234).

CONCLUSIONS

Naturally occurring vanadium is among the lowest of trace elements in mammals (27, 30). Although nutritional essentiality has been established for the chicken and the rat, the physiologic role of vanadium remains unknown. It appears that vanadium exists in body fluids in +5 oxidation state as VO_3^- and intracellularly in +4 state as VO²⁺. VO₃ or VO²⁺ interferes with numerous enzymes involving phosphate at concentrations ranging from nM to mM. Of the enzymes studied, the most sensitive to VO₃ is Na⁺ + K⁺ ATPase; this enzyme is more resistant to VO2+ than to VO3. The proposal that vanadium may be a regulator of the Na⁺ pump by means of a redox mechanism is yet to be proven. On the other hand, the differential sensitivity of various enzymes to vanadium has been exploited as an investigative tool. In general, it requires a large concentration (>10⁻⁴ M) of VO₃ outside the cell to influence even the sensitive intracellular enzymes. In the intact animal vasoconstriction is the most consistently observed pharmacologic-toxic effect of VO₃. There are obscure species differences in its renal, cardiac, and ocular actions: administration of VO₃ may cause diuresis or antidiuresis, may have a positive or a negative inotropic effect on the heart, and may have variable effectiveness in reducing intraocular pressure. In spite of the recent advances, the understanding of vanadium effects remains incomplete because multiple mechanisms may be involved.

Literature Cited

- Biggs, W. R., Swinehart, J. H. 1976. Vanadium in selected biological systems. In Metals Ions in Biological Systems; Biological Actions of Metal Ions, ed. H. Sigel, 6:141-96. New York: Dekker, 453 np.
- National Institute of Occupational Safety and Health. 1977. Vanadium. Washington DC: USDHEW, PHS, CDC. 142 pp.
- National Research Council Committee on Biologic Effects of Atmospheric Pollutants. 1974. Vanadium. Washington DC: Natl. Acad. Sci. 117 pp.
- DC: Natl. Acad. Sci. 117 pp.
 4. Schroeder, H. A. 1974. The Poisons Around Us. Bloomington: Indiana Univ. Press. 144 pp.
- Press. 144 pp.
 5. Schroeder, H. A., Balassa, J. J., Tipton, I. H. 1963. Abnormal trace metals in

- man-vanadium. J. Chron. Dis. 16:1047-
- Waters, M. D. 1977. Toxicology of vanadium. Adv. Mod. Toxicol. 2:147-89
- Underwood, E. J. 1977. Trace Elements in Human and Animal Nutrition, pp. 388-97. New York: Academic. 4th ed. 454 pp.
- Clark, R. J. H. 1973. Vanadium. In Comprehensive Inorganic Chemistry, ed. C. Bailar Jr., et al, 3:491-551. New York: Pergamon. 1387pp.
- Rubinson, K. A. 1981. Concerning the form of biochemically active vanadium. Proc. R. Soc. London Ser. B 212:65-84
- Macara, I. G. 1980. Vanadium—An element in search of a role. Trends Biochem. Sci. 5:92-94

- 11. Singh, J., Nordlie, R. C., Jorgenson, R. A. 1981. Vanadate: A potent inhibitor of multifunctional glucose-6-phosphatase. Biochim. Biophys. Acta 678:477–82
- 12. Swarup, G., Cohen, S., Garbers, D. L. 1982. Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem. Biophys. Res. Commun. 107:1104-9
- Cantley, L. C. Jr., Josephson, L., War-ner, R., Yanagisawa, M., Lechene, C., Guidotti, G. 1977. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem. 252:7421–23
- 14. Nechay, B. R., Saunders, J. P. 1978. Inhibition by vanadium of sodium and potassium dependent adenosinetriphosphatase derived from animal and human tissues. J. Environ. Pathol. Toxicol. 2:247-62
- Quist, E. E., Hokin, L. E. 1978. The presence of two (Na⁺ + K⁺)-ATPase inhibitors in equine muscle ATP: Vanadate and a dithioerythritol-dependent in-Biochim. Biophys. hibitor. Acta 511:202~12
- Cantley, L. C. Jr., Cantley, L. G., Josephson, L. 1978. A characterization of vandate interactions with the (Na,K)-ATPase. Mechanistic and regulatory im-
- plications. J. Biol. Chem. 253:7361-68 Akera, T., Temma, K., Takeda, K. 1983. Cardiac actions of vanadium. Fed. Proc. 42:2984-88
- 18. Becker, B. 1980. Vanadate and aqueous humor dynamics. Invest. Ophthalmol. Vis. Sci. 19:1156-65
- 19. Editorial. 1981. Vanadium in manicdepressive illness. Lancet 2:511-12
- 20. Erdmann, E. 1980. Cardiac effects of vanadate. Basic Res. Cardiol. 75:411-12
- 21. Grantham, J. J. 1980. The renal sodium pump and vanadate. Am. J. Physiol. 239:F97-106
- 22. Hansen, O. 1983. Vanadate and phosphotransferases with special emphasis on ouabain/Na, K-ATPase interaction. Acta
- Pharmacol. Toxicol. 52:1-19
 23. Phillips, T. D., Nechay, B. R., Heidelbaugh, N. D. 1983. Vanadium: Chemistry and the kidney. Fed. Proc. 42:2969-
- 24. Sachs, G. 1980. Vanadate as a transport probe. J. Lab. Clin. Med. 96:379-81
- 25. Simons, T. J. B. 1979. Vanadate—A new tool for biologists. Nature 281:337-
- 26. Byrne, A. R., Kosta, L. 1978. Vanadium in foods and in human body fluids and tissues. Sci. Total Environ. 10:17-30
- Versieck, J., Cornelis, R. 1980. Normal

- levels of trace elements in human blood plasma or serum. Anal. Chim. Acta 116:217–54
- 28. Myron, D. R., Givand, S. H., Nielsen, F. H. 1977. Vanadium content of selected foods as determined by flameless atomic absorption spectroscopy. J. Agric. Food Chem. 25:297-300
- 29. Stroop, S. D., Helinek, G., Greene, H. L. 1982. More sensitive flameless atomic absorption analysis of vanadium in tissue and serum. Clin. Chem. 28:79-82
- 30. Cornelis, R., Versieck, J., Mees, L., Hoste, J., Barbier, F. 1981. The ultratrace element vanadium in human serum. Biol. Trace Element Res. 3:257-63
- 31. Dick, D. A. T., Naylor, G. J., Dick, E. G. 1982. Plasma vanadium concentration in manic-depressive illness. Psychol. Med. 12:533-37
- 32. Post, R. L., Hunt, D. P., Walderhaug, M. O., Perkins, R. C., Park, J. H., et al. 1979. Vanadium compounds in relation to inhibition of sodium and potassium adenosine triphosphatase. In Na, K-ATPase Structure and Kinetics, ed. J. C. Skou, J. G. Nørby, pp. 389-401. New York: Academic. 549 pp.
- 33. Kelm, W., Schaller, K. H. 1978. The quantitative determination of vanadium in blood samples of ecologically and occupationally exposed persons with a specific and sensitive method. Wiss. Umwelt 1:34-42
- 34. Byrne, A. R., Kosta, L. 1979. On the vanadium and tin contents of diet and human blood. Sci. Total Environ. 13:87-
- 35. Byrne, A. R., Vrbič, V. 1979. The vanadium content of human dental enamel and its relationship to caries. J. Radioanal. Chem. 54:77-85
- 36. Byrne, A. R., Kosta, L., Dermelj, M., Tušek-Žnidarič, M. 1983. Aspects of some trace elements in human milk. In Trace Elements: Analytical Chemistry in Medicine and Biology, Vol. 2. Berlin: de Gruyter. In press
- 37. Cornelis, R., Mees, L., Hoste, M. J., Ryckebusch, J., Versieck, J., Barbier, F. 1979. Neutron activation analysis of vanadium in human liver and serum. In Nuclear Activation Techniques in the Life Sciences 1978, pp. 165-77 Vienna: Intl. Atomic Energy Agency
 38. Corder, C. N. 1983. Vanadium levels in
- human kidney at autopsy. Fed. Proc. 42:627 (Abstr.)
- 39. Thürauf, J., Schaller, K. H., Syga, G., Weltle, D. 1978. The vanadiumconcentration of the human placenta. Wiss. Umwelt 2:84-88

- 40. United States Environmental Protection Agency. 1979. Toxic Trace Metals in Mammalian Hair and Nails, pp. 130-32. Las Vegas, Nevada: Environ. Monitoring Sys. Lab. EPA-600/4-79-449. 185
- 41. Gibson, R. S., DeWolfe, M. S. 1979. The zinc, copper, manganese, vanadium, and iodine content of hair from 38 Canadian neonates. Pediatr. Res. 13:959-62
- 42. Creason, J. P., Hinners, T. A., Bumgarner, J. E., Pinkerton, C. 1975. Trace elements in hair, as related to exposure in metropolitan New York. Clin. Chem. 21:603-12
- 43. Tipton, I. H., Shafer, J. J. 1964. Statistical analysis of lung trace element levels. Arch. Environ. Health 8:58-67
- 44. Myron, D. R., Zimmermann, T. J., Shuler, T. R., Klevay, L. M., Lee, D. E., et al. 1978. Intake of nickel and vanadium by humans A survey of selected diets. Am. J. Clin. Nutr. 31:527-31
- 45. Tipton, I. H., Stewart, P. L., Dickson, J. 1969. Patterns of elemental excretion in long term balance studies. Health Phys. 16:455-62
- 46. Higashino, H., Bogden, J. D., Lavenhar, M. A., Bauman, J. W. Jr., Hirotsu, T., et al. 1983. Na-K-ATPase, and potassium adaptation in the rat. Am. J. Physiol. 244:F105-11
- 47. Söremark, R. 1967. Vanadium in some biological specimens. J. Nutr. 92:183-
- 48. Phillips, T. D., Nechay, B. R., Neldon, S. L., Kubena, L. F., Heidelbaugh, N. D., et al. 1982. Vanadium-induced inhibition of renal Na⁺, K⁺-adenosinetriphosphatase in the chicken after chronic dietary exposure. J. Toxicol. Environ. Health 9:651-61
- 49. Blotcky, A. J., Falcone, C., Medina, V. A., Rack, E. P., Hobson, D. W. 1979. Determination of trace-level vanadium in marine biological samples by chemical neutron activation analysis. Anal. Chem. 51:178–82
- 50. LaTouche, Y. D., Bennett, C. W., Mix, M. C. 1981. Determination of vanadium in a marine mollusc using a chelating ion exchange resin and neutron activation. Bull. Environ. Contam. Toxicol. 26:224-
- 51. Söremark, R., Ullberg, S. 1962. Distribution and kinetics of ⁴⁸V₂O₅ in mice. In The Use of Radioisotopes in Animal Biology and the Medical Sciences, ed. N. 103-14. New Friend, pp. York: Academic. 563 pp.
- 52. Söremark, R., Ülberg, S., Appelgren, L.-E. 1962. Autoradiographic localiza-

- tion of vanadium pentoxide (V_2O_5) in developing teeth and bones of rats. Acta Odontol. Scand. 20:225-29
- 53. Bawden, J. W., Deaton, T. G., Chavis, M. 1980. In vivo and in vitrostudy of 48 V uptake in developing rat molar enamel. J. Dent. Res. 59:1643-48
- 54. Bogden, J. D., Higashino, H., Lavenhar, M. A., Bauman, J. W. Jr., Kemp, F. W., Aviv, A. 1982. Balance and tissue distribution of vanadium after short-term ingestion of vanadate. J. Nutr. 112:2279-85
- 55. Conklin, A. W., Skinner, S. C., Felten, T. L., Sanders, C. L. 1982. Clearance and distribution of intratracheally instilled vanadium compounds in the rat. Toxicol. Lett. 11:199-203
- 56. Hansen, T. V., Aaseth, J., Alexander, J. 1982. The effect of chelating agents on vanadium distribution in the rat body and on uptake by human erythrocytes. Arch. Toxicol. 50:195-202
- 57. Oberg, S. G., Parker, R. D. R., Sharma, R. P. 1978. Distribution and elimination of an intratracheally administered vanadium compound in the rat. Toxicology 11:315-23
- 58. Parker, R. D. R., Sharma, R. P. 1978. Accumulation and depletion of vanadium in selected tissues of rats treated with vanadyl sulfate and sodium orthovanadate. J. Environ. Pathol. Toxicol. 2:235-45
- Parker, R. D. R., Sharma, R. P., Oberg, S. G. 1980. Distribution and accumulation of vanadium in mice tissues. Arch. Environ. Contam. Toxicol. 9:393-403
- 60. Peabody, R. A., Wallach, S., Verch, R. L., Lifschitz, M. 1980. Effect of LH and FSH on vanadium distribution in hypophysectomized rats. Proc. Soc. Exp. Biol. Med. 165:349-53
- 61. Wiegmann, T. B., Day, H. D., Patak, R. V. 1982. Intestinal absorption and secretion of radioactive vanadium (48VO₃) in rats and effect of Al(OH)₃. J. Toxicol. Environ. Health 10:233-45
- Sabbioni, E., Marafante, E. 1978. Metabolic patterns of vanadium in the rat. Bioinor. Chem. 9:389-407
- 63. Sabbioni, E., Marafante, E., Amantini, L., Ubertalli, L., Birattari, C. 1978. Similarity in metabolic patterns of different chemical species of vanadium in the rat. Bioinorg. Chem. 8:503-15
- 64. Chasteen, N. D., Theil, E. C. 1982. Iron binding by horse spleen apoferritin. A vanadyl (IV) EPR spin probe study. J. Biol. Chem. 257:7672-77
- 65. Sabbioni, E., Marafante, E. 1981. Relations between iron and vanadium metab-

- olism: In vivo incorporation of vanadium into iron proteins of the rat. J. Toxicol. Environ. Health 8:419-29
- 66. Hayat, M. A. 1975. Positive Staining for Electron Microscopy, p. 221. New York: Van Nostrand Reinhold. 361 pp.
- 67. Davies, N. T. 1981. An appraisal of the newer trace elements. Phil. Trans. R. Soc. London Ser. B 294:171-84
- 68. Golden, M. H. N., Golden, B. E. 1981. Trace elements. Br. Med. Bull. 37:31-36
- 69. Hopkins, L. L. Jr., Mohr, H. E. 1971. The biological essentiality of vanadium. In Newer Trace Elements in Nutrition, ed. W. Mertz, W. E. Cornatzer, pp. 195-New York: Dekker. 438 pp
- 70. Hopkins, L. L. Jr. 1974. Essentiality and function of vanadium. In Trace Element Metabolism in Animals Vol. 2, ed. W. G. Hoekstra, J. W. Suttie, H. E. Ganther, W. Mertz, pp. 397-406. Baltimore: University Park. 775 pp.Mertz, W. 1974. The newer essential
- trace elements, chromium, tin, vanadium, nickel and silicon. Proc. Nutr. Soc. 33:307-13
- 72. Kubena, L. F., Phillips, T. D. 1983. Toxicity of vanadium in female leghorn chickens. Poult. Sci. 62:47-50
- 73. McKeehan, W. L., McKeehan, K. A., Hammond, S. L., Ham, R. G. 1977. Improved medium for clonal growth of human diploid fibroblasts at low concentrations of serum protein. In Vitro 13:399-416
- 74. Carpenter, G. 1981. Vanadate, epidermal growth factor and the stimulation of DNA synthesis. Biochem. Biophys. Res. Commun. 102:1115–21
- Rifkin, R. J. 1965. In vitro inhibition of Na⁺ -K⁺ and Mg²⁺ ATPases by mono, di and trivalent cations. Proc. Soc. Exp. Biol. Med. 120:802-4
- Beaugé, L. A., Glynn, I. M. 1977. A modifier of (Na⁺ + K⁺) ATP ase in commercial ATP. Nature 268:355-56
- 77. Beaugé, L. A., Glynn, I. M. 1978. Commercial ATP containing traces of vanadate alters the response of $(Na^+ + K^+)$ ATPase to external potassium. Nature 272:551–52
- 78. Charney, A. N., Silva, P., Epstein, F. H. 1975. An in vitro inhibitor of Na-K-ATPase present in an adenosine triphosphate preparation. J. Appl. Physiol. 39:156–58
- 79. Hudgins, P. M., Bond, G. H. 1977. (Mg²⁺ + K⁺)-dependent inhibition of NaK-ATPase due to a contaminant in equine muscle ATP. Biochem. Biophys. Res. Commun. 77:1024-29
- 80. Josephson, L., Cantley, L. C. Jr. 1977.

- Isolation of a potent (Na-K)ATPase inhibitor from striated muscle. Biochemistry 16:4572-78
- 81. Cantley, L. C. Jr., Aisen, P. 1979. The fate of cytoplasmic vanadium. Implications on (Na,K)-ATPase inhibition. J. Biol. Chem. 254:1781-84
- 82. Cantley, L. C. Jr., Josephson, L., Gelles, J., Cantley, L. G. 1979. The active site structure of the Na, K-ATPase. See pp. 181-91. New York: Ref. 32. Academic
- 83. Glynn, I. M., Richards, D. E. 1982. Occlusion of rubidium ions by the sodium-potassium pump: Its implications for the mechanism of potassium transport. J. Physiol. 330:17-43
- 84. Karlish, S. J. D., Beaugé, L. A., Glynn, I. M. 1979. Vanadate inhibits (Na⁺ + K⁺) ATPase by blocking a conformational change of the unphosphorylated form. Nature 282:333-35
- 85. Robinson, J. D., Mercer, R. W. 1981. Vanadate binding to the (Na + K)-ATPase. Bioenerg. Biomembr. 13:205-18
- 86. Smith, R. L., Zinn, K., Cantley, L. C. Jr. 1980. A study of the vanadate-trapped state of the (Na,K)-ATPase. Evidence against interacting nucleotide site models. J. Biol. Chem. 255:9852-59
- Bond, G. H., Hudgins, P. M. 1979. Kinetics of inhibition of NaK-ATPase by Mg²⁺, K⁺, and vanadate. *Biochemistry* 18:325–31
- Bond, G. H., Hudgins, P. M. 1982. Low-affinity (Na⁺ + K⁺)-ATPase modulate inhibition of Na-ATPase by vanadate. Biochim. Biophys. Acta 687:310-
- 89. Hansen, O. 1982. Studies on ouabaincomplexed (Na+ K+)-ATPase carried out with vanadate. Biochim. Biophys. Acta 692:187-95
- 90. Grantham, J. J., Glynn, I. M. 1979. Renal Na, K-ATPase: Determinants of inhibition by vanadium. Am. J. Physiol. 236:F530-35
- 91. MacDonald, E., LeRoy, A., Linnoila, M. 1982. Failure of lithium to counteract vanadate-induced inhibition of red blood cell membrane Na+, K+-ATPase. Lancet 2:774
- 92. Hansen, O. 1979. Facilitation of ouabain binding to $(Na^+ + K^+)$ -ATPase by vanadate at in vivo concentrations. Biochim. Biophys. Acta 568:265-69
- 93. Hansen, O. 1979. Reactive states of the Na, K-ATPase demonstrated by the stability of the enzyme-ouabain complex. See Ref. 32, pp. 169-80
- 94. Hansen, O. 1980. Vanadate interaction

- with Na, K-ATPase. An assay of serum vanadium based on the displacement of (48V) vanadate from Na, K-ATPase. Basic Res. Cardiol. 75:455-59
- 95. Wallick, E. T., Lane, L. K., Schwartz, A. 1979. Regulation by vanadate of ouabain binding to (Na⁺, K⁺)-ATPase. J. Biol. Chem. 254:8107-09
- 96. Norgaard, A., Kjeldsen, K., Hansen, O., Clausen, T. 1983. A simple and rapid method for the determination of the number of ³H-ouabain binding sites in biopsies of skeletal muscle. Biochem. Biophys. Res. Commun. 111:319–25
- 97. Michell, A. R., Taylor, E. A. 1982. The optimum pH of renal adenosine triphosphatase in rats: Influence of vanadate, noradrenaline and potassium. Enzymes 28:309-16
- 98. Wu, P. H., Phillis, J. W. 1979. Effects of vanadate on brain (Na⁺-K⁺) ATPase and p - nitrophenylphosphatase - interactions with mono- and di-valent ions and with noradrenaline. Int. J. Biochem. 10:629-35
- Macara, I. G., Kustin, K., Cantley, L. C. Jr. 1980. Glutathione reduces cytoplasmic vanadate. Mechanism and physiological implications. Biochim. Biophys. Acta 629:95-106
- 100. Vykočil, F., Teisinger, J., Dlouhá, H. 1980. A specific enzyme is not necessary vanadate-induced oxidation NADH. Nature 286:516-17
- 101. Vyskočil, F., Pilař, J., Zemková, H., Teisinger, J. 1982. Reduction of vanadate to vanadyl by methylene-blue, imipramine, and chlorpromazine in absence of NADH. Lancet 1:1078-79
- 102. Cantley, L. C. Jr., Ferguson, J. H., Kustin, K. 1978. Norepinephrine complexes and reduces vanadium (V) to reverse vanadate inhibition of the (Na,K)-ATPase. J. Am. Chem. Soc. 100:5210-
- 103. Hudgins, P. M., Bond, G. H. 1979. Reversal of vanadate inhibition of NaK-ATPase by catecholamines. Res. Com-Chem. Pathol. Pharmacol. mun. 23:313-26
- 104. Last, T. A., Gantzer, M. L., Tyler, C. D. 1983. Ion-gated channel induced in planar bilayers by incorporation of (Na, K)-ATPase. J. Biol. Chem. 258:2399-404
- 105. Beaugé, L. 1979. Vanadate-potassium interactions in the inhibition of Na, K-
- ATPase. See Ref. 32, pp. 373-87 106. Cantley, L. C. Jr., Resh, M. D., Guidotti, G. 1978. Vanadate inhibits the red cell (Na+,K+) ATPase from the cytoplasmic side. Nature 272:252-54
- 107. Beaugé, L., Dipolo, R. 1979. Vanadate

- selectively inhibits the K₀⁺-activated Na⁺ efflux in squid axons. Biochim. Biophys. Acta 551:220-23
- 108. Heinz, A., Rubinson, K. A., Grantham, J. J. 1982. The transport and accumulation of oxyvanadium compounds in human erythrocytes in vitro. J. Lab Clin. Med. 100:593-612
- 109. North, P. E., Post, R. L. 1983. Two patterns of inhibition of (Na,K) ATPase by vanadyl ion. Fed. Proc. 42:1926
- 110. Vyskočil, F., Teisinger, J., Dlouhá, H. 1981. The disparity between effects of vanadate (V) and vanadyl (IV) ions on (Na+-K+)-ATPase and K+-phosphatase in skeletal muscle. Biochem. Biophys. Res. Commun. 100:982-
- 111. Degani, H., Gochin, M., Karlish, S. J. D., Shechter, Y. 1981. Electron paramagnetic resonance studies and insulinlike effects of vanadium in rat adipocytes. Biochemistry 20:5795-99
- 112. Johnson, J. L., Cohen, H. J., Rajagopalan, K. V. 1974. Studies of vanadium toxicity in the rat. Lack of correlation with molybdenum utilization. Biochem. Biophys. Res. Commun. 56:940-46
- Sakurai, H., Shimomura, S., Fukuzawa, K., Ishizu, K. 1980. Detection of oxovanadium (IV) and characterization of its ligand environment in subcellular fractions of the liver of rats treated with pentavalent vanadium (V). Biochem. Biophys. Res. Commun. 96:293-98
- 114. Sakurai, H., Goda, T., Shimomura, S. 1982. ³¹P- and ¹³C-NMR study of the ATP (adenosine triphosphatase)-vanadyl complex. Biochem. Biophys. Res. Commun. 108:474-78
- 115. Sakurai, H., Goda, T., Shimomura, S., Yoshimura, T. 1982. ATP (adenosine triphosphate)-vanadyl complex. Biochem. Biophys. Res. Commun. 104:
- 116. De Sousa, R. C., Grosso, A. 1979 Vanadate blocks cyclic AMP-induced stimulation of sodium and water transport in amphibian epithelia. Nature 279:803-
- 117. Walker, M. D., Phillips, T. D. 1983. Effects of vanadate and vanadyl on sodium transport in toad urinary bladder. Toxicologist 3:75 (Abstr.)
- 118. Arruda, J. A. L., Westenfelder, C. 1983. Effect of vanadate water transport by the toad bladder. Life Sci. 32:1879-84
- Arruda, J. A. L., Sabatini, S., Westen-felder, C. 1981. Vanadate inhibits urinary acidificion by the turtle bladder. Kidney Int. 20:772-79
- 120. Bell, M. V., Sargent, J. R. 1979. The

- partial purification of sodium-pluspotassium ion-dependent adenosine triphosphatase from the gills of Anguilla anguilla and its inhibition by orthovanadate. Biochem. J. 179:431-38
- 121. Bond, G. H., Hudgins, P. M. 1980. Inhibition of red cell Ca2+-ATPase by vanadate. Biochim. Biophys. Acta 600:781-90
- 122. Hagenmeyer, A., Wierichs, R., Bader, H. 1980. Vanadate inhibition of the Ca++-ATPase of sarcoplasmic reticulum from pig heart. Basic Res. Cardiol. 75:452–54
- 123. Pick, U. 1982. The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum. J. Biol. Chem. 257:6111–19
- 124. Wang, T., Tsai, L. I., Solaro, R. J., Grassi de Gende, A. O., Schwartz, A. 1979. Effects of potassium on vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase from dog cardiac and rabbit skeletal muscle. Biochem. Biophys. Res. Commun. 91:356-61
- 125. Pick, U., Karlish, S. J. D. 1982. Regulation of the conformational transition in the Ca-ATPase from sarcoplasmic reticulum by pH, temperature, and calcium ions. J. Biol. Chem. 257:6120-26
- Dupont, Y., Bennett, N. 1982. Vanadate inhibition of the Ca²⁺-dependent conformational change of the sarcoplasmic reticulum Ca²+-ATPase. FEBS Lett. 139:237-40
- 127. Barrabin, H., Garrahan, P. J., Rega, A. F. 1980. Vanadate inhibition of the Ca2+ -ATPase from human red cell membranes. Biochim. Biophys. Acta 600:796-804
- 128. O'Neal, S. G., Rhoads, D. B., Racker, E. 1979. Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases. Biochem. Biophys. Res. Commun. 89:845-50
- 129. Rossi, J. P. F. C., Garrahan, P. J., Rega, A. F. 1981. Vanadate inhibition of active Ca²⁺ transport across human red cell membranes. Biochim. Biophys. Acta 648:145-50
- Niggli, V., Adunyah, E. S., Penniston,
 J. T., Carafoli, E. 1981. Purified (Ca²⁺-Mg²⁺)-ATPase of the erythrocyte membrane reconstitution and effect of calmodulin and phospholipids. J. Biol. Chem. 256:395-401
- 131. Szasz, I., Sarkadi, B., Enyedi, A., Gárdos, G. 1981. Ca-transport and CaMg-ATPase activity in human red cell preparations. Acta Biol. Med. Ger. 40:429–36
- 132. Varecka, L., Carafoli, E. 1982. Vanadate-induced movements of Ca2+ and K+

- in human red blood cells. J. Biol. Chem. 257:7414–21
- Siemon, H., Schneider, H., Fuhrmann,
 G. F. 1982. Vanadium increases selective K+-permeability in human erythrocytes. Toxicology 22:271-78
- 134. Caroni, P., Carafoli, E. 1981. The Ca2+pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J. Biol. Chem. 256:3263-70
- 135. Wibo, M., Morel, N., Godfraind, T. 1981. Differentiation of Ca²⁺ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle. Biochim. Biophys. Acta 649:651–60
- 136. DiPolo, R., Rojas, H. R., Beaugé, L. 1979. Vanadate inhibits uncoupled Ca efflux but not Na-Ca exchange in squid axons. Nature 281:228-29
- 137. Nordmann, J. J., Zyzek, E. 1982. Calcium efflux from the rat neurohypophysis. J. Physiol. 325:281-99
- 138. Kanagasuntheram, P., Theo, T. S. 1982. Parotid microsomal Ca2+ transport subcellular localization and characterization. Biochem. J. 208:789-94
- 139. Famulski, K., Carafoli, E. 1982. Ca2+ transporting activity of membrane fracisolated from the postmitochondrial supernatant of rat liver. Cell Calcium 3:263-81
- 140. Iwasa, Y., Iwasa, T., Higashi, K., Matsui, K., Miyamoto, E. 1982. Demonstration of a high affinity Ca²⁺-ATPase in rat liver plasma membranes. Biochem. Biophys. Res. Commun. 105:488-94
- 141. Faller, L. D., Malinowska, D. H., Rabon, E., Smolka, A., Sachs, G. 1981. Mechanistic studies of the gastric (H+ + K⁺)-ATPase. Prog. Clin. Biol. Res. 73:153-74
- 142. Faller, L., Jackson, R., Malinowska, D., Mukidjam, E., Rabon, E., Saccomani, G., Sachs, G., Smolka, A. 1982. Mechanistic aspects of gastric [H⁺ + K⁺]-ATPase. Ann. NY Acad. Sci. 402:146-63
- 143. Yoshimura, F., Brodie, A. F. 1981. Interaction of vanadate with membranebound ATPase from mycobacterium phlei. J. Biol. Chem. 256:12239-42
- 144. Gibbons, I. R. 1982. Dynein ATPases. Prog. Clin. Biol. Res. 80:87-93
- 145. Johnson, K. A., Porter, M. E. 1982. Transient state kinetic analysis of the dynein ATPase. Prog. Clin. Biol. Res. 80:101-06
- 146. Gibbons, I. R., Cosson, M. P., Evans, J. A., Gibbons, B. H., Houck, B., et al. 1978. Potent inhibition of dynein adenosinetriphosphatase and of the motility of

- cilia and sperm flagella by vanadate. Proc. Natl. Acad. Sci. USA 75:2220-24
- 147. Kobayashi, T., Martensen, T., Nath, J., Flavin, M. 1978. Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem. Biophys. Res. Commun. 81:1313-18
- 148. Shimizu, T. 1981. Steady-state kinetic study of vanadate-induced inhibition of ciliary dynein adenosinetriphosphatase activity from Tetrahymena. Biochemistry 20:4347-54
- 149. Shimizu, T. 1982. Further investigations on the vanadate-induced inhibition kinetics of enzyme activity of ciliary dynein from tetrahymena. Prog. Clin. Biol. Res. 80:107-12
- Anderson, S. A., Purich, D. L. 1982. A reinvestigation of dynein ATPase kinetics and the inhibitory action of vanadate. J. Biol. Chem. 257:6656-58
- 151. Goodenough, U. W., Heuser, J. E. 1982. Substructure of the outer dynein arm. J. Cell Biol. 95:798–815
- 152. Majumder, G. C. 1981. Enzymic characteristics of ecto-adenosine triphosphatase in rat epididymal intact spermatozoa. Biochem. J. 195:103-10
- 153. Penningroth, S. M. 1982. Dependence of flagellar relaxation on the hydrolysis of ATP. Prog. Clin. Biol. Res. 80:121–26
- 154. Penningroth, S. M., Cheung, A., Olehnik, K., Koslosky, R. 1982. Mechanochemical coupling in the relaxation of rigor-wave sea urchin sperm flagella. J. Cell Biol. 92:733—41
- 155. Rikmenspoel, R., Orris, S. E., Isles, C. A. 1981. Effects of vanadate, Mg²⁺ and electric current injection on the stiffness of impaled bull spermatozoa. J. Cell. Sci. 51:53-61
- 156. Satir, P., Wais-Steider, J., Lebduska, S., Nasr, A., Avolio, J. 1981. The mechanochemical cycle of the dynein arm. Cell Motil. 1:303-27
- 157. Warner, F. D., McIlvain, J. H. 1982. Binding stoichiometry of 21 S dynein to A and B subfiber microtubules. Cell Motil. 2:429-43
- 158. Goodno, C. C. 1979. Inhibition of myosin ATPase by vanadate ion. Proc. Natl. Acad. Sci. USA 76:2620-24
- Goodno, C. C., Taylor, E. W. 1982. Inhibition of actomyosin ATPase by vanadate. Proc. Natl. Acad. Sci. USĂ 79:21–25
- 160. Kawamura, T., Tawada, K. 1982. Dissociation of actomyosin by vanadate plus ADP, and decomposition of the myosin-ADP-vanadate complex by action. J. Biochem. 91:1293-98

- Yamin, M. A., Tamm, S. L. 1982. ATP reactivation of the rotary axostyle in termite flagellates: Effects of dynein ATPase inhibitors. J. Cell Biol. 95:589-
- 162. Cande, W. Z., Wolniak, S. M. 1978. Chromosome movement in lysed mitotic cells is inhibited by vanadate. J. Cell. Biol. 79:573-80
- 163. Steams, M. E., Ochs, R. L. 1982. A functional in vitro model for studies of intracellular motility in digitoninpermeabilized erythrophores. J. Cell Biol. 94:727-39
- 164. Beckerle, M. C., Porter, K. R. 1982. Inhibitors of dynein activity block intracellular transport in erythrophores. Nature 295:701-03
- Grupp, G., Grupp, I., Johnson, C. L., Wallick, E. T., Schwartz, A. 1979. Effects of vanadate on cardiac contraction and adenylate cyclase. Biochem. Commun. Biophys. Res. 88:440-47
- 166. Hackbarth, I., Schmitz, W., Scholz, H. Wetzel, E., Erdmann, E., et al. 1980. Stimulatory effect of vanadate on cyclic AMP levels in cat papillary muscle. Biochem. Pharmacol. 29:1429–32
- Krawietz, W., Werdan, K., Erdmann, E. 1980. Stimulation of human cardiac adenylate cyclase by vanadate. Basic Res. Cardiol. 75:433-37
- Pertseva, M. N., Kuznetsova, L. A., Mazina, T. I., Plesneva, S. A. 1982. Study of functional properties of the catecholamine-sensitive adenylate cyclase system in embryonic skeletal muscle. Biokhimiia 47:1678-86
- Schmitz, W., Hackbarth, I., Scholz, H., Wetzel, E. 1980. Effects of vanadate on the c-AMP system of the heart. Basic Res. Cardiol. 75:438-43
- 170. Schwabe, U., Puchstein, C., Hannemann, H., Sochtig, E. 1980. Activation of adenylate cyclase by vanadate. Nature 277:143-45
- 171. Schmitz, W., Scholz, H., Erdmann, E., Krawietz, W., Werdan, K. 1982. Effect of vanadium in the +5, +4 and +3 oxidation states on cardiac force of contraction, adenylate cyclase and (Na+ + K+)-ATPase activity. Biochem. Pharmacol. 31:3853-60
- 172. Lichtstein, D., Mullikin-Kilpatrick, D., Blume, A. J. 1982. Modification of neuroblastoma X glioma hybrid NG108-15 adenylate cyclase by vanadium ions. Biochem. Biophys. Res. Commun. 105:1157-65
- 173. Johnson, R. A. 1982. Changes in pH sensitivity of adenylate cyclase specifi-

- cally induced by fluoride and vanadate. Arch. Biochem. Biophys. 218:68-76
- 174. Krawietz, W., Downs, R. W. Jr., Spiegel, A. M., Aurbach, G. D. 1982. Vanadate stimulates adenylate cyclase via the guanine nucleotide regulatory protein by a mechanism differing from that of fluoride. *Biochem. Pharmacol*. 31:843-48
- 175. Fleming, W. W. 1980. The electrogenic Na⁺, K⁺-pump in smooth muscle: Physiologic and pharmacologic significance. Ann. Rev. Pharmacol. Toxicol. 20:129–49
- 176. Hamlyn, J. M., Ringel, R., Schaeffer, J., Levinson, P. D., Hamilton, B. P., et al. 1982. A circulating inhibitor of (Na⁺ + K⁺) ATPase associated with essential hypertension. *Nature* 300:650-52
- Day, H., Middendorf, D., Lukert, B., Heinz, A., Grantham, J. 1980. The renal response to intravenous vanadate in rats. J. Lab. Clin. Med. 96:382-95
- Hatfield, M., Churchill, P. 1981. Renal vascular and tubular effects of vanadate in the anesthetized rat. J. Pharmacol. Exp. Ther. 217:406-10
- 179. Steffen, R. P., Pamnani, M. B., Clough, D. L., Huot, S. J. Muldoon, S. M., et al. 1981. Effect of prolonged dietary administration of vanadate on blood pressure in the rat. Hypertension 3 (Suppl. 1):173-78
- Borchard, U., Greeff, K., Hafner, D., Noack, E., Rojsathaporn, K. 1981. Effects of vanadate on heart and circulation. J. Cardiovasc. Pharmacol. 3:510– 21
- Inciarte, D. J., Steffen, R. P., Dobbins, D. E., Swindall, B. T., Johnston, J., et al. 1980. Cardiovascular effects of vanadate in the dog. Am. J. Physiol. 239:H47-56
- Larsen, J. A., Thomsen, O. Ø. 1980. Vascular effects of vanadate. Basic Res. Cardiol. 75:428–32
- Larsen, J. A., Thomsen, O. Ø. 1980.
 Vanadate-induced oliguria and vasoconstriction in the cat. Acta Physiol. Scand. 110:367-74
- 184. Hom, G. J., Chelly, J. E., Jandhyala, B. S. 1982. Evidence for centrally mediated effects of vanadate on the blood pressure and heart rate in anesthetized dogs. *Proc. Soc. Exp. Biol. Med.* 169:401–05
- Hudgins, P. M., Bond, G. H. 1981. Alteration by vanadate of contractility in vascular and intestinal smooth muscle preparations. *Pharmacology* 23:156-64
- Ozaki, H., Ueda, F., Urakawa, N. 1982.
 Inhibitory effects of vanadate on the con-

- tractile responses in vascular smooth muscle. Eur. J. Pharmacol. 80:317-22
- Ozaki, H., Urakawa, N. 1980. Effects of vanadate on mechanical responses and Na-K pump in vascular smooth muscle. Eur. J. Pharmacol. 68:339-47
- 188. Rapp, J. P. 1980. Aortic responses to vanadate: Independence from (Na,K)-ATPase and comparison of Dahl saltsensitive and salt-resistant rats. Hypertension 3 (Suppl. 1):168-72
- tension 3 (Suppl. 1):168-72
 189. Kwan, C. Y. 1982. Mg²⁺- or Ca²⁺activated ATPase activities of plasma
 membranes isolated from vascular
 smooth muscle. Enzymes 28:317-27
- 190. Török, T. L., Rubányi, G., Vizi, E. S., Magyar, K. 1982. Stimulation by vanadate of [³H] noradrenaline release from rabbit pulmonary artery and its inhibition by noradrenaline. Eur. J. Pharmacol. 84:93-97
- Ehlers, D. 1981. Isolation and characterization of phosphatases from vascular smooth muscle. Acta Biol. Med. Ger. 40:1087-93
- 192. Ueda, F., Kishimoto, T., Ozaki, H., Urakawa, N. 1982. Dual actions of vanadate on high K-induced contraction in guinea-pig taenia coli. *Jpn. J. Pharma*col. 32:149-57
- Garcia, A. G., Jurkiewicz, A., Jurkiewicz, N. H. 1981. Contractile effect of vanadate and other vanadium compounds on the rat vas deferens. Eur. J. Pharmacol. 70:17-23
- 194. Stemmer, P., Akera, T., Brody, T. M. 1983. Vanadate effects Mn²⁺-sensitive but not ryanodine-sensitive, calcium pools in isolated rat and guinea pig heart muscle. Fed. Proc. 42:633 (Abstr.)
- 195. Werdan, K., Bauriedel, G., Fischer, B., Krawietz, W., Erdmann, E., et al. 1982. Stimulatory (insulin-mimetic) and inhibitory (ouabain-like) action of vanadate on potassium uptake and cellular sodium and potassium in heart cells in culture. Biochim. Biophys. Acta 23:79-93
- 196. Clausen, T., Andersen, T. L., Stürup-Johansen, M., Petkova, O. 1981. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. XI. The effect of vanadate on ⁴⁵Ca-efflux and sugar transport in adipose tissue and skeletal muscle. Biochim. Biophys. Acta 646:261-67
- Catalan, R. E., Martinez, A. M., Aragones, M. D., Godoy, J. E., Robles, A., et al. 1982. Effects of vanadate on heart protein kinase. *Biochem. Med.* 28:353-57
- 198. Herzig, J. W., Peterson, J. W., Solaro, R. J., Ruegg, J. C. 1981. Phosphate and

- vanadate reduce the efficiency of the chemomechanical energy transformation in cardiac muscle. Adv. Exp. Med. Biol. 151:267-81
- 199. Lopez Novoa, J. M., Garcia, J. C., Cruz-Soto, M. A., Benabe, J. E., Martinez-Maldonade, M. 1982. Effect of sodium orthovanadate on renal renin secretion in Pharmacol. Exp. Ther. vivo. J. 222:447-51
- 200. Lopez-Novoa, J. M., Mayol, V., Martinez-Maldonado, M. 1982. Renal actions of orthovanadate in the dog. Proc. Soc. Exp. Biol. Med. 170:418-26 201. Kumar, A., Corder, C. N. 1980. Diuretic
- and vasoconstrictor effects of sodium orthovanadate on the isolated perfused rat kidney. J. Pharmacol. Exp. Ther. 213:85–90
- 202. Gonick, H. C. 1982. Pathophysiology of human proximal tubular transport defects. Klin. Wochenschr. 60:1201-11
- 203. Churchill, P. C., Churchill, M. C. 1980. Vanadate inhibits renin secretion from rat kidney slices. J. Pharmacol. Exp. Ther. 213:144-49
- 204. Westenfelder, C., Hamburger, R. K., Garcia, M. E. 1981. Effect of vanadate on renal tubular function in rats. Am. J. Physiol. 240:F522-29
- Doucet, A., Katz, A. I. 1982. High-affinity Ca-Mg-ATPase along the rabbit nephron. Am. J. Physiol. 242:F346-52 206. Krupin, T., Becker, B., Podos, S. M.
- 1980. Topical vanadate lowers intraocular pressure in rabbits. Invest. Ophthalmol. Vis. Sci. 19:1360-63
- Krupin, T., Podos, S. M., Becker, B. 1983. Ocular effects of vanadate. In Glaucoma Update, ed. G. K. Krieglstein, W. Leydhecker, 2:25-29. Berlin: Springer-Verlag
- 208. Candia, O. A., Podos, S. M. 1981. Inhibition of active transport of chloride and sodium by vanadate in the comea. Invest. Ophthalmol. Vis. Sci. 20:733-37
- 209. Thacher, S. M. 1981. Transient phosphorylation by ATP of a 160,000 dalton protein in rod outer segment of Bufo Marinus. Biochim. Biophys. Acta 648:199-205
- D. Demott, J. E., 210. Marcus, Kobayashi, T., Ge, X.-X., Thalmann, R. 1981. Specificity of action of vanadate to the organ of Corti. Hearing Res. 5:231-43
- 211. Marcus, D. C., Ge, X.-X., Thalmann, 1982. Comparison of the nonadrenergic action of phentolamine with that of vanadate on cochlear function. Hearing Res. 7:233-46
- 212. Sweadner, K. J. 1979. Two molecular

- forms of (Na+ + K+)-stimulated ATPase in brain. Separation and difference in affinity for strophanthidin. J. Biol. Chem. 254:6060-7
- 213. Witkowska, D., Brzeziński, J. 1979. Alteration of brain noradrenaline, dopamine and 5-hydroxytryptamine during vanadium poisoning. Pol. J. Pharmacol. Pharm. 31:393-98
- 214. Danielsson, E., Unden, A., Bartfai, T. 1983. Ortho-vanadate induces loss of muscarinic cholinergic binding sites. Biochem. Biophys. Res. Commun. 110:567-72
- 215. Done, A. K. 1979. Of metals and chelation. Emerg. Med. 11:186-218
- Naylor, G. J. 1983. Vanadium and affective disorders. Biol. Psychiatr. 18:103-12
- 217. Naylor, G. J., Smith, A. H. W. 1981. Vanadium: A possible aetiological factor in manic depressive illness. Psychol. Med. 11:249–56
- 218. Naylor, G. J., Smith, A. H. W. 1981. Defective genetic control of sodiumpump density in manic depressive psychosis. Psychol. Med. 11:257-63
- Narsapur, S. L., Naylor, G. J. 1983. Methylene blue. A possible treatment for manic depressive psychosis. J. Affect. Disorders 5:155-61
- Lees, R. E. M. 1980. Changes in lung function after exposure to vanadium compounds in fuel oil ash. Br. J. Industr.
- Med. 37:253-56 221. Musk, A. W., Tees, J. G. 1982. Asthma caused by occupational exposure to vanadium compounds. Med. J. Austr. 20:183-84
- 222. Medinsky, M. A., Cuddihv, R. G., Hill, J. O., McClellan, R. O. 1981. Toxicity of selenium compounds to alveolar macrophages. Toxicol. Lett. 8:289-93
- 223. Thomsem, O. Ø., Larsen, J. A. 1982. Comparison of vanadate and ouabain effects on liver hemodynamics and bile production in the perfused rat liver. J. Pharmacol. Exp. Ther. 221:197–205
- 224. Sabbioni, E., Marafante, E., Rada, J., Gregotti, C., Dinucci, A., et al. 1981. Biliary excretion of vanadium in rats. Toxicol. Eur. Res. 3:93–98
- 225. Beyhl, F. E. 1982. Action of ammonium meta vanadate on the activities of hepatic drug-metabolizing enzymes in vitro. Biochem. Pharmacol. 31:1458-61
- 226. Heide, M., Legrum, W., Netter, K. J., Fuhrmann, G. F. 1983. Vanadium inhibits oxidative drug demethylation in vivo in mice. Toxicology 26:63-71
- 227. Inouye, B., Morita, K., Ishida, T., Ogata, M. 1980. Cooperative effect of sulfite

Inhibition of stimulated bone resorption by vanadate. Endocrinology 113:324-28

229. Lichtstein, D., Mullikin-Kilpatrick, D., Blume, A. J. 1982. Hyperpolarization of neuroblastoma-glioma hybrid NG108--15 by vanadium ions. Proc. Natl. Acad.

Sci. USA 79:4202-6

230. Macara, I. G., McLeod, K., Kustin, K. 1979. Isolation, properties and structural studies on a compound from Tunicate blood cells that may be involved in vanadium accumulation. Biochem. J. 181: 457-65

231. Macara, I. G., McLeod, G. C., Kustin, K. 1979. Vanadium in tunicates: Oxygen-binding studies. Comp. Biochem. Physiol. A 62:821-26

232. Caughey, W. S. 1973. Iron porphyrinshemes and hemins. In Inorganic Biochemistry, ed. G. L. Eichhorn, 2:797-831. Amsterdam: Elsevier. 1263 pp.

233. Sakurai, H., Goda, T., Shimomura, S. 1982. Vanadyl (IV) ion dependent enhancement of oxygen binding to hemoglobin and myoglobin. Biochem. Biophys. Res. Commun. 107:1349-54

 Köpf-Maier, P., Wagner, W., Hesse, B., Köpf, H. 1981. Tumor inhibition by metallocenes: Activity against leukemias and detection of the systemic effect. Eur. J. Cancer 17:665-69

235. Nieder, G. L., Corder, C. N., Culp, P. A. 1979. The effect of vanadate on human kidney potassium dependent phosphatase. Naunyn-Schmiedebergs Arch. Pharmacol. 307:191-97

236. Nechay, P. S. E., Nanninga, L. B. Nechay, B. R. 1984. Binding of vanadyl to intracellular ligands. Fed. Proc. (Abstr.). In press